Boreal forest CO2 exchange and evapotranspiration predicted by nine ecosystem process models: Intermodel comparisons and relationships to field measurements
نویسندگان
چکیده
Nine ecosystem process models were used to predict CO2 and water vapor exchanges by a 150-year-old black spruce forest in central Canada during 1994–1996 to evaluate and improve the models. Three models had hourly time steps, five had daily time steps, and one had monthly time steps. Model input included site ecosystem characteristics and meteorology. Model predictions were compared to eddy covariance (EC) measurements of whole-ecosystem CO2 exchange and evapotranspiration, to chamber measurements of nighttime moss-surface CO2 release, and to ground-based estimates of annual gross primary production, net primary production, net ecosystem production (NEP), plant respiration, and decomposition. Model-model differences were apparent for all variables. Model-measurement agreement was good in some cases but poor in others. Modeled annual NEP ranged from 11 g C m 2 (weak CO2 source) to 85 g C m 2 (moderate CO2 sink). The models generally predicted greater annual CO2 sink activity than measured by EC, a discrepancy consistent with the fact that model parameterizations represented the more productive fraction of the EC tower “footprint.” At hourly to monthly timescales, predictions bracketed EC measurements so median predictions were similar to measurements, but there were quantitatively important model-measurement discrepancies found for all models at subannual timescales. For these models and input data, hourly time steps (and greater complexity) compared to daily time steps tended to improve model-measurement agreement for daily scale CO2 exchange and evapotranspiration (as judged by root-mean-squared error). Model time step and complexity played only small roles in monthly to annual predictions.
منابع مشابه
Comparison of Boreal Ecosystem Model Sensitivity to Variability in Climate and Forest Site Parameters
Ecosystem models are useful tools for evaluating environmental controls on carbon and water cycles under past or future conditions. In this paper we compare annual carbon and water fluxes from nine boreal spruce forest ecosystem models in a series of sensitivity simulations. For each comparison, a single climate driver or forest site parameter was altered in a separate sensitivity run. Driver a...
متن کاملSeasonal exchange of CO2 and D O-CO2 varies with postfire succession in boreal forest ecosystems
[1] Seasonal cycles of atmospheric CO2 and d O-CO2 at high northern latitudes have the potential to serve as indicators of ecological change in response to climate changes. Effective interpretation of these observations requires an understanding of how different species and ecosystems contribute to biosphere-atmosphere exchange. Here we examined the effect of postfire stand age in boreal forest...
متن کاملEnvironmental controls on the carbon isotope composition of ecosystem-respired CO2 in contrasting forest ecosystems in Canada and the USA.
We compared the carbon isotope composition of ecosystem-respired CO2 (delta13C(R)) from 11 forest ecosystems in Canada and the USA and examined differences among forest delta13C(R) responses to seasonal variations in environmental conditions from May to October 2004. Our experimental approach was based on the assumption that variation in delta13C(R) is a good proxy for short-term changes in pho...
متن کاملMultiscale model intercomparisons of CO2 and H2O exchange rates in a maturing southeastern US pine forest
We compared four existing process-based stand-level models of varying complexity (physiological principles in predicting growth, photosynthesis and evapotranspiration, biogeochemical cycles, and stand to ecosystem carbon and evapotranspiration simulator) and a new nested model with 4 years of eddy-covariance-measured water vapor (LE) and CO2 (Fc) fluxes at a maturing loblolly pine forest. The n...
متن کاملChanges in net ecosystem exchange of CO2, latent and sensible heat fluxes in a recently clear-cut spruce forest in western Russia: results from an experimental and modeling analysis
Ecosystem carbon dioxide, energy, and water fluxes were measured using eddy covariance in a fresh clear-cut surrounded by a mixed spruce-birch-aspen forest in the boreal zone of European Russia. Measurements were initiated in spring 2016 following timber harvest and continued for five months. The influence of surrounding forest on air flow and turbulent fluxes within the clear-cut were examined...
متن کامل